
IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Rounded Corners in Microwave High~Power Filters

and Other Components*

SEYMOUR B. COHN~, I?ELLOW, IRE

389

Summcwg-Microwave high-power filters must be operated with

internal air pressures of at least one atmosphere, or with a good
vacuum. Pressures between these extremes result in reduced power-

handling ability. The breakdown processes for both high air pressure

and vacuum are discussed, and it is made clear that any sharp corner

on which the electric field would concentrate must be rounded if

high-power operation is to be achieved. For good results in vacuum

operation, the surfaces must be especially smooth and free of con-

tamination, while in high-pressure operation, minor irregularities are

less {mportant.

Various high-power filter configurations of importance are de-

scribed, ar~d the structural corners at which electric-field con centra-

tions occur are pointed out. A number of simplified geometries are

then shown that can represent the essential portions of the practical

structures with sufficient accuracy for ordinary purposes. Formulas

and graphs for these simplified geometries are presented that give

the ratio of the maximum electric field strength on the boundary to a

uniform reference field strength at a point sufficiently removed from

the corner. In some caaes, the boundary curve is an approximation to

a circular arc, while in other cases a boundary shape is derived such

that the electric field strength along the curve is constant. These

constant-field-strength boundaries are optimum shapes from the

standpoint of power-hanclliig ability.

I. INTRODUCTION

T
HE maximum allowable power flow in high-power

filters or other components is limited by ionization

- breakdown in regions of high electric-field con-

centratic,n. The critical value of electric field above

which breakdown occurs depends upon a number of

interdependent factors: 1) the composition and pressure

of the air or other gas filling the device; 2) the signal

frequency; 3) the size and shape of the region over which

the electric field approaches its maximum concentra-

tion; 4) the presence of nearby conducting surfaces,

their shapes, and their spacings; and 5) the pulse length,

shape, a od repetition frequency.

The breakdown process as a function of the above

parameters has been analyzed by Gould.l His work

shows that for usual sizes of uniform waveguides and

coaxial tines operated near standard-atmosphere air

pressure, the ratio of the peak RF electric field strength

at breakdown in volts per centimeter to the pressure

in atmospheres is approximately independent of fac-

tors 2)–5 ), and is near to the previously accelpted value

* Rece]vecf by the PGMTT, March, 7, 1961; revised manuscript
received, May 25, 1961. This work was performed at Stanford
Res. Inst., Menlo Park, Calif., under the support of the Rome Air
Dev. Ctr., under Contract No. AF 30(602)-1998.

~ Rantec Corp., Calabasas, Calif.
1 L. Gmld. “Handbook on Breakdown of Air in Wavexuide

Systems, ” Microwave Associates, Inc., Burlington, M:,ss. Rep~. on
Contract Nobsr 63295; April, 1956.

Also, L,. Gould and L. W. Roberts, “Breakdown of air at micro-
wave frequencies, ” ~. Appl. Phys., vol. 27, pp. 1162-1 1701; April, 1956.

of 29,000 volts/cm/unit pressure in atmospheres. z

Gould has not considered more complex geometries, but

his data for coaxial lines indicate that this figure would

hold approximately for rounded-corner radii as small

as 1 mm at one atmosphere pressure, with the break-

down field strength being higher for smaller radii or

smaller pressure. (For constant error, radius times pres-

sure is a constant. ) As the pressure is decreased below

one atmosphere, factors 2)–5) begin to haLve much

stronger effects. However, since a high-power filter

would usually be operated with at least one atmosphere

of pressure, it appears a reasonably good approximation

to treat the value of 29,000 volts/cm/atmosphere as a

constant. Fortunately, this is a conservative approxi-

mation, since the effect of factors 2)–5) is to raise rather

than lovver the breakdown field strength.

At a pressure of the order of one millimeter of mer-

cury, the breakdown field strength as a function of

pressure passes through a minimum. At lower pressures,

the breakdown field strength increases rapidly. At pres-

sures lower than about 10–5 mm Hg, corresponding to a

good vacuum, ionization of the remaining air molecules

is no longer important and another mechanism~ of break-

down becomes limiting. Much less is known about RF

breakdc)wn in vacuum than at high pressures. However,

current evidence indicates that the RF breakdown

mechanism in vacuum is jield emission of electrons

from conducting surfaces. Field emission requires

field strengths of the order of megavolts per cm.3 Such

field strengths may develop at minute irregularities,

thus initiating breakdown, even when the macroscopic

field strength is much lower. Because of this it is ex-

tremely important that the surface be smooth and free

of contamination.

It has thus been established that the attainment of

prespecified values of electric field strength will result in

breakdown of high-power microwave filters at high

pressures. In vacuo, it is not certain whether a definite

breakdown field strength can be prespecified, lbut never-

theless the breakdown power can certainly be in-

creased by minimizing electric-field concentrations.

Thus either in high pressure or in vacuo, any edges at

which the electric field may concentrate {should be

rounded. As an aid in determining the degree of round-

‘ H. A. Wheeler, “Nomogram for Some Limitations on High-
Frequency Voltage Breakdown in Air, ” Wheeler Labs., Inc., illono-
graph No. 17; May, 1953.

3 W. S. Boyle, P. Kisliuk, and L. H. Germer, ‘(Electrical break-
down in high vacuum, ” J. Appl. Phys., vol. 26, pp. 72(0–725; June,
1955.
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ing necessary, a number of rounded-corner geometries

important in microwave-filter structures have been

analyzed by conformal-transformation methods, and the

results are given in this paper. For each geometry con-

sidered, the maximum field is related to a reference field

at a sufficient distance from the rounded edge that the

reference field will be essentially uniform. This informa-

tion will enable filter designers to relate the maximum

field strength occurring in a given filter to the power

passing through it. The breakdown value of power may

then be determined in the case of high air pressure by

setting -this maximum field strength equal to approxi-

mately 29,000 volts/cm multiplied by the pressure in

atmospheres. A safety factor should of course be ap-

plied to the calculated breakdown power in order to

arrive at a safe power rating for the filter.

Another phenomenon which can, under special cir-

cumstances, reduce the power transmitted through an

evacuated high-power filter is called multipacto~.4 Multi-

pactor is a resonant secondary-emission process in an

evacuated region that occurs when an electron under

the action of an RF electric field has a time of transit

between opposite walls of the region that equals ap-

proximately one-half the period of an RF cycle. Limited

evidence available to this author indicates that in high-

power filters utilizing low-Q elements, multipactor

would ordinarily absorb no more than a few watts of

power, and hence would not greatly affect performance.

If high-Q elements are used however, the loss may be

large.

II. TYPICAL HIGH-POWER FILTER CONFIGURATIONS

Fig. 1 shows simplified sketches of a number of basic

high-power filter structures in which electric-field con-

centration occurs at corners. At all outside corners in

the E plane, such as those marked A, the field strength

would approach infinity if the radius of the corner

were made to approach zero. At all inside sharp corners,

such as those marked B, the field strength is zero and

is hence no problem. Fig. 1(a) is typical of the corru-

gated, or varying-impedance filter.5,e Fig. 1 (b) is a

modification of Fig. l(a), in which the angle of the

corner is changed to decrease the field concentration. ~

Figs. 1(c) and 1(d) are leaky wall filters, in which slots

in the broad walls of the main waveguide open into

4 W. G. Abraham, ‘<Interactions of Electrons and Fields of Cavity
Resonators, ” Ph. D. dissertation, Dept. of Elec. Engrg., Stanford
Univ., Stanford, Calif.; 1950.

i S. B. Cohn, “Design relations for the wide-band waveguide
filter, ” PROC, IRE, vol. 38, pp. 799-803; July, 1950.

0 B. M. Schiffman and S. B. Cohn, “Wide-Stop-Band Waveguide
Filters, ” presented at the 1959 PGMTT Natl. Symp., Harvard Univ.,
Cambridge, Mass.; June 1, 1959.

Also see S. B. Cohn, et al., “Design Criteria for Microwave Filters
and Coupling Structures, ” Stanford Res. Inst., Menlo Park, Calif.,
Tech. Rept. No. 2, Contract No. DA36-039-SC-74862; June, 1958.

7 J. H. Vogelman, “High-power microwave filters, ” IRE TR.kNS.
ON MICROWAVE THEORY AND TECHNIQES, vol. MTT-6, pp. 429–439;
Octoberj 1958.

LOAD
MAT’L

(c) I E

w

SECTION .4-A

LOAD

MAT,L

((1) IE

SECTION B–B

‘e)=
SECTION C–C

Fig. l—Typical rounded-corner configurations
in high-power filters.

secondary waveguides of higher cutoff frequency. 8–10

Fig. 1 (e) is a coupled-cavity filter with rounded edges at

the apertures. 8

Rigorous solutions of the structures in Fig. 1 would

be virtually impossible to achieve. However, the solu-

tions for a number of simpler cases shown in Fig. 2 have

been obtained that may be applied to the actual filter

structures with accuracy sufficient for practical pur-

poses. The two most important assumptions are: 1)

the rounded corner geometry may be considered to be

composed of infinite cylindrical surfaces, so that the

solution for a single two-dimensional cross section is

sufficient, and 2) the essential portions of the cross

section are small compared to a wavelength, so that the

field distribution in those regions may be considered

to be very nearly a static field distribution. The first

assumption applies exactly to cases like Fig. 1(a) and

1 (b), and with fair accuracy to cases like Fig. 1 (c)-1(e).

The second assumption will usually apply with good

accuracy in the pass band of these filters, even though

s S. B. Cohn, “Design considerations for high-power microwave
filters, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol.
MTT-7, pp. 149–153; January, 1959.

gV. Met, “Absorptive filters for microwave harmonic power, ”
PROC. IRE, vol. 47, pp. 1762–1 769; October, 1959.

10V. G, price R. H. Stone, and V. Met, “Harmonic suppression
by Iealw-wall w&emide filter, ” 1959 IRE WESCON CONVENTION
R“ECORD; pt. 1, pp. 112–1 18.
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Fig. 2-—’rwdimensionalal geometries considered in this paper.

the over-all waveguide or cavity dimensions are large

parts of’ a wavelength.

The two-dimensional geometries considered in this

paper are shown in Fig. 2. The angular desijguation ap-

plied to each corner in Fig, 2 indicates the change in di-

rection of a tangent line as it is moved around the

corner. The array of 180-degree rounded corners of

Fig. 2(a) has most direct application to the leaky-wall

filters of Fig. 1(c) and 1(d). The individual conductors

of the array are assumed to be at the same potential.

Their center-to-center spacings are assumec[ to be suf-

ficiently smaller than the spacing to any other conduct-

ing surface that the field well below the array of corners

may be considered uniform, and equal to a reference

value EO, The 45-degree rounded corner of Fig. 2(b)

applies to the varying-impedance filter of Fig. 1(b). By

image arguments, the unsymmetrical and symmetrical

forms cf the 45-degree corner may, of course, be shown

to have identical solutions. In this case, the reference

field is the uniform field E. in the parallel-plane region

at a point sufficiently removed from the corner. The

90-degree corner near an electric wall, Fig. 2(c), applies

to varying-impedance filter structures when the spacing

between the broad walls of the main waveguide is small

compared to the width of the slots. The 90-degree

rounded corner near a magnetic w-all, Fig. 2 (d), may be

applied to slots in the broad wall of a waveguide when

the RF voltage across the slot is relatively small. This

would usually be true in the pass band for the leaky-

wall filters of Figs. 1(c) and 1(d), but not usually in the

pass band of the varying-impedance filter of Fig. 1(a).

In that case, when the dimensions are about as shown

in the figure, the field in the vicinity of the slot opening

may be obtained to a good approximation by super-

imposing the field distributions of Figs. 2(c) and 2(d).

The coupled-cavity filter of Fig. 1 (e) is an example of

a more complex structure to which the rounded-corner

data of this paper may be applied. The maximum elec-

tric field strength will occur in the cemtral longitudinal

E plane of the filter. In the absence of the coupling

apertures, the field would be greatest at the centers of

the cavities, and zero along their vertical sicles. In the

presence of the coupling apertures, however, there will

be electric field concentrations along the top and bot-

tom edges of the apertures that could exceed the field

strength at the cavity centers unless the edges are suf-

ficiently rounded. The maximum field strength at the

input and output couplings of Fig. 1 (e) ma~~ be deter-

mined from the solution for Fig. 2(c), and that at the

central coupling from the solution for Fig. 2 (a), with

t/1<<1.

III. ARRAY OF 180-DEGREE ROUNDED CORNERS

In the case of an array of 180-degree rounded corners,

a method of analysis due to Vlrheeleru has made possible

the derivation of the curved-boundary shape upon

which the E field is constant (see Part A of Appendix).

Figs. 3 and 4 show to scale the resulting boundary

shapes for different values of plate thickness t to center-

to-center spacing 1. It is seen that the radius of curva-

ture varies greatly over each curved portion of the

boundary, being relatively large at the center point and

decreasing toward the ends. This variatiou in curva-

ture is necessary in order to maintain constant field

strength over the curved boundary. On the straight,

vertical portions of the boundary, the fielcl drops off

rapidly from the corner. If the curved boundary had arty

other shape, the field would be nonuniform, a~ttaining in

some regions values higher than the constant value oc-

curring on the boundaries of Figs. 3 and 4. Conse-

quently, the boundary shapes in these figures are par-

ticularly significant for the design of high-power filters

requiring this basic configuration.

The constant field strength Emax turns out to be very

simply related to the uniform field E. well below the

array, as follows:

(1)

The square-root relationship makes E~../JE2o increase

slowly as t/1 is decreased. For example, if t/1equals

0.5, E~.x/Eo will equal 1.414, and if t/1equals 0.1,

EmaJEo will equal 3,16. Points x, y on the curved

11H, .4. Wheeler, “Confornlal Mapping of Rounded Polygons by
a Wave-Filter Analog, ” Wheeler Labs., Inc., Great Neck, N. Y.,
Rept. No. 667; August 8, 1955.
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boundary may be computed by means of the following

parametric equations:

(2)*= ~ [f tan-’ (p tan ~) - ~]

l–t
— in [1 + (p’ – 1) sin’ +], (3)

‘=47r

where P = (1 +t/1)/(1 —t/l), and where @ is an inde-

pendent variable. The co-ordinate system is shown in

Fig. 5. As d is increased from – 7T/2 to 7/2, the point

x, y moves from the left end of the curve to the right

end, resulting in a curve that is a symmetrical function

of @. The coordinates of the end points are

xl 1 1 I–t/l 1 + t/1
—=.+ ~=g —ln — + (4)
t t t/1 1 – t/1

The value of yl/t decreases from 0.318 for t/1= O to O for

t/1=1, which results in the curve shapes being more

flattened for the larger t/1values, as may be seen in

Fig. 4.

There are two special cases of constant-field-strength

boundaries that may be derived from (2)–(4). The

D-

‘7. . . . /.

r f--:

I/;

I
—.

I
1

J ,_ .!

first is that of an isolated plate with rounded edge,

obtained when l/t-+KI.The curve for this case, which

was computed previously by Wheeler,ll is plotted in

Fig. 6. The end points are xl= ~ t/2 and yl = 0,318t.

This curve may be used in other situations than that of

Fig. 6 as an approximation to the ideal curve, if the

edge of a plate is removed from any other boundary sur-

face by a distance equal to at least several plate thick-

nesses.

The other special case is that of an isolated slot with

rounded edges where the two sides of the slot are at the

same potential. The boundary shape, obtained when

t/1+1, is shown in Fig. 7. It is seen that the curve falls

monotonically to the left, but approaches zero slope as

x+ – ~. Eq. (1) shows that the field strength on the

curved boundary is equal to the uniform field strength

far below it. However, because of its infinite extent, the

boundary must in practice be altered at some point, in

which case a somewhat greater maximum field strength

will occur.

Y

_~

‘ –~
t

-X, ,Y, X,, Y,

-.=’

T
—x

Fig. 5—Coordinate system for array of 180-degree corners,

Fig. 6—Isolated rounded 180-degree corner plotted to scale.

Fig. 3—Arrays of rounded 180-degree corners shaped
for constant electric field.

Fig. 4—Shapes of rounded 180-degree corners for
various values of t/1.

I

Fig. 7—Limiting case of rounded 180-degree corner for t/1-+1
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I’~’. ROUNDED W-DEGREE CORNER NEAR

ELECTRIC WALL

Fig. 2 (c) shows a rounded 90-degree corner near an

electric wall, ancl its symmetrical equivalent. Two

curved-boundary shapes are of interest: 1) a circular

arc, and 2) a shape resulting in constant field strength

on the rounded surface.

It is not feasible to solve exactly the case of a 90-

degree circular-arc corner, but a solution has been ob-

tained for a shape that is a good approximatic)n to a cir-

cular arc.l~–l~ The actual curved boundary obtained in

this case is shown in Fig. 8 for two values of r/b, where

Y and b as-e defined in the figure. These boundaries were

plotted with the aid of formulas given by Weber.15

(Note, however, that Weber’s plot of one of the bound-

arieslG is grossly inaccurate. ) The formula for the ratio

of E~aJ.Qo as a function of r/b is also given by Weber,

and is plotted in Fig. 9. For example, E~JEo = 1.4o at

r/b = 0.6 Thus, in a rectangular waveguide (containing

such a corner, breakdown will occur at about half the

breakdown power of the uniform waveguide itself.

An abrupt step in height of a waveguide, or in di-

ameter c)f a coaxial line, has an equivalent circuit con-

sisting simply of a shunt capacitive susceptance at ref-

erence planes coinciding with the step itself. Graphical

data have been published giving the value of this sus-

ceptance for sharp-corner rectangular-waveguide and

coaxial-line configurations .lT,18 If the corner is rounded,

the discontinuity susceptance will be less than that of a

sharp corner. A formula for the change in susceptance,

AB, was previously derived by this author19 [or the ap-

proximate circular-arc case. The resulting plot of AB

versus r/b is given in Fig. 10 for a step in height in

rectangular waveguide. The total shunt susceptance of

the rour.ded step is

B = BI,=, + AB, (5)

where B ] ,=0 is the susceptance of a sharp step.18 Note

that AB is a negative quantity, and hence B is smaller

than B ] ,=.. Rounding of the corner also re:jults in an

“ L. Dreyfus, “Zur Berechnung von Durchslags und ~berschlags-
spanning, ” Arch. Electrotech., vol. 13, p. 131; 1924.

“ J. D. Cockcroft, “The effect of curved boundaries on the dis-
tribiltion of electrical stress round corners, ” 1. IEE, vol. 66, pp.
385-409 ; 1928.

l! E. \veber, ‘{Electromagnetic Fields, ” John Wiley and Sons, I1lc.,
New York. N. Y.. vol. I. IJU. 373–377: 1950.

15Ibid.: p. 374. ‘ ‘ “
“ Ibid., p. 376.
‘7 N. IVIarcuvitz, ‘%raveguide Handbook, ” McGraw-Hill Book

~:~1 Inc., New York, N. Y., Rad. Lab. Series, vol. 10, pp. 307-312;

‘g J. R IVhinnery, H. W. Jamieson, and T, E. Robbins, “Coaxial-
~;f-tdiscontiuuities, ” PROC. IRE, vol. 32, pp. 695–7091; November,

Fig. 8—.\ctual shape of approximately circular, 90-degree
rounded corner near au electric wall.
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increase in stored magnetic energy. This may be taken
30 10

account of by adding a series inductive element in the 28 09

equivalent circuit at the reference plane of the step, or 26

by a shift of one of the reference planes and modifica-

08

tion of 1?. These alternative equivalent circuits are
24 07

shown in Fig. 10. Values of AB taken from the curve in
22 06

Fig. 10 will be accurate as long as r is sufficiently small
h ~. ~5 ~
Eo

r,

compared to the dimension (bl —Q/2. Good results 18 04

should be expected for r as large as one half that dimen- 16 03

sion. It is also necessary that AX/ZoJ be small; e.g., less

than 0.3 should suffice.
14 02

12 01

B. Constant- Field- St~ength Boundary Ic
0 02 04 (36 08 )0 ,20

A solution in the case of a rounded 90-degree corner
vll~

near an electric wall has been obtained yielding the Fig, 11—Plot of E~,x/Eo for rounded 90-degree corner near a mag-

boundary shape having uniform field strength on the
netic wall; also, rz/rl for a umform-field-strength boundary.

curved arc.u,n Cockroftlx gives formulas from which this

boundary shape may be plotted, and shows in his Fig.

19 one such boundary drawn to scale. The shape of the

boundary is very much like that of Fig. 8, but com-

pressed in height. The plot of E~fiX/Eo versus rJb for

this case is included in Fig. 9. Also plotted is the ratio of

YI and r2, the dimensions that define the horizontal and

vertical extent of the curved boundary. As should be

expected, the E~JEo curve for the uniform-field-

strength case falls below that for the approximate circu-

lar-arc case. The two cases coalesce as rJb approaches

zero.

V. ROUNDED 90-DEGREE CORNER NEAR

MAGNETIC WIALL

A rounded 90-degree corner near a magnetic wall is

shown in Fig. 2(d), along with its symmetrical equiv-

alent. As in the case of an adjacent electric wall,

Section IV, two curved-boundary shapes are of particu-

lar interest: 1) a circular arc, and 2) the shape resulting

in constant field strength on the rounded surface.

A. Approximate Circula~ Boundary

The approximate-circular-arc solution discussed in

Section IV-A has been modified to apply to an adjacent

magnetic wall (see Part B of Appendix). The boundary

shape is exactly the same as in Section IV-A, and hence

Fig. 8 applies to the magnetic-wall case as well as to the

electric-wall case if r/d= r/b. For the adjacent magnetic

wall, the ratio of the maximum field strength on the

boundary to the distant uniform field strength was

found to be

E
==(l+k)dl+~,

Eo
(6)

where h and P are parameters plotted by Weber14 in his

Fig. 28.8. Eq. (6) is plotted in Fig. 11. The maximum-

field-strength point occurs at the end of the curved

boundary farthest from the magnetic wall.

B. Constant-Field-Strength Boundury

The rounded 90-degree corner shape having constant

field strength E~.x on the curved portion of the bound-

ary has been solved for the case of an adjacent mag-

netic wall [see Part B-2) of Appendix]. The curved-

boundary end-point dimensions r, and r, are given by

?’2
– = ~ [tanh-l ~1 – AZ -<1 – ~J],
d

(8)

where h is a parameter with value between O and 1. In

terms of A, the ratio of constant field strength E~.x on

the curved boundary to the distant uniform field E. is

E max

–d

I+k

E. = 1–A”
(9)

The resulting curves of Emax/~o and YJY1 are Shown in

Fig. 11. Note that the E~JEo curve falls below the

corresponding curve for the approximate circular-

boundary case, as would be expected.

Detailed boundary curves for this case may be

plotted from the following equations:

(10)

where X is the same parameter as in (7), (8), and (9), u

is a variable in the interval 1< ZL< I/A, and the coor-

dinate system is as shown in Fig. 11. The boundary

shapes yielded by (10) and (11) resemble those in Fig. 8

very closely, if the horizontal and vertical scale factors

are altered to make the end points correspond to the

appropriate values of rJd and rJd.
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VI. ROLTNDED 45-DEGREE CORNER

The solution for a rounded 45-degree corner adjacent

to an electric wall is outlined in Part C of the Appendix.

This configuration and its symmetrical equivalent are

shown i n Fig. 2(b). The resulting curved boundary is

neither ii circular arc, nor a shape having constant field

strength. For r/b<<l, the curve has the appearance

shown in Fig. 12. The formula for this curve is

.z==— *W 1)’”+ (t+ 1)’/’}, (12)

where z = x +jy is a point on the curve with coordinate

system as shown in Fig. 12, and t is a real variable in the

interval — 1 gt ~ 1. The field strength along the curved

portion of the boundary is given, in the case ~/b<<l, by

(2+@’/’Ec
E(z) = –,

[(.l–~)’/’+ (l+t+<2(1<t)l –t)’/’(’]l)I/’] l/’ ’13)

in which EC is the field strength at the center point of

the curve. Because of the assumption that r/b<<l,

E(z) is a symmetrical function of t near the corner. Eq.

(13) is plotted in Fig. 13, where it is seen that the field

strength on the boundary is almost constant except very

near the junction points between curved and straight

parts c)f the boundary. For r/b<<l, the ratio of field

strength at the center of the curve to the LIniforrn field

strength in the parallel-plane region is

E.

2- (L)’’5(Y6E* = (1 + <2)’/’ ST

~ 1/5

()
=0.853 — .

Y
(14)

Clearl:y, if the transitions from the curved-to-straight

portions of the boundary were made slightly more

gradual, the sharp rise at the junction points could be

greatly reduced, with the maximum field strength on

the bcundary perhaps 1.1 times the value at the center

of the curve.

Because of the one-fifth-root dependence in (14), the

increase in EJEO is very slow relative to b/r. For ex-

ample, EJEO= 1.35 when ~/b =0.1, while for r/b =0.01,

E./EO = 2.14. These are much smaller field-strength

values than occur with 90-degree rounded corners.

VII. CONCLUSIONS

In high-power filters, whether operated with high

internal pressure or vacuum, the power-handling ability

is limited by electric-fieId concentrations at corners. By

increasing the radius of curvature of these corners, the

power rating of the filter may be increased. The formu-

las and graphs contained in this paper give quantitative

data for various practical rounded-corner configura-

tions With these data, a filter designer can predict the

power rating of a given structure or, if a particular

/

/

.s ox

Fig. 12—Shape of rounded -45-degree corner drawn
to sccde for r/b<<l.

1.6 I 1

~ ‘1

-Em,,, = I 553

r/ b.. l
14 –

12

~
E,

10

CUR”,, :.:::. =1”~-
STRA)GHT

PORTlON

39!5

08

[

I

I

,-,6’” ~LL. ~
0 02 0’4 06 08 10 12 14

1

Fig. 1.3—Electric field strength on boundary of The rounded 45-
degree corner shown in Fig. 12 (t is a “lel]gth” parameter meas-
urecl from the ceuter of the corner).

ratil~g is specified, he can select the necessary rourlded-

corner dimensions to meet that requirement.

Some of the rounded corners considered in this paper

are approximations to circular arcs, while others are

shaped so that the electric field strength is lmiform on

the roul~ded portion of the boundary. The uniform-

field-strength corners may be considered to be optimum,

since any other boundary curve starting and ending at

the same p~ints would have a greater field strength

so]newhere on the curve.

Machining with high precision the exact theoretical

shapes treated in this paper would not be a straight-

forward operation. Fortunately, minor deviations in

shape will result in only small changes in the value of

maximum field strength, as long as the boundary curve

is smooth.

APPENDIX

A. .4.nalysis of A rvay of 180-Degree Rounded Cowe?.s

Following a suggestion of Wheeler,ll one may show

that the periodic z-plane boundary in Fig. 14(a) is

transformed into the real axis of the w = IL +jv plane in

Fig. 14(b) by the following relation:

where m is a real constant between O and ~. “rhe single

period of the z-plane boundary between x = O and x =r
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maps into the u axis, also between O and r. Inspec-

tion of (15) shows that dz/dw is constant in magnit-

ude but variable in angle for w real and in the range

] u] ~tan-l(l/m). This range of u corresponds to the

curved part of the z-plane boundary. The electric field

strength in the z plane is proportional to I dw/dz I , and

hence the field strength is constant along the curve.

Further examination of (15) shows that this constant

value of field strength is the maximum occurring in the

cross section. Integration of (15) and substitution of the

appropriate boundary conditions yields (l)—(4).

* .-+-
o@@@@”

I +E(zl kE [w) :2cONSTAN1

Fig. 14—Transformation for array of 180-degree
rounded corners.

Ibt
@’-’@

Fig. 15—Transformations for rounded 90-degree
corner near magnetic wall.

B. .4 nalysis of Rounded 90-DegYee Cower Near Magnetic

Wail

1) .Jpproxirnate Ci~cula~ Bounda~y: ViJeberlJ gives the

following transformation (with notation changed) re-

lating the z- and t-plane boundaries of Fig. 15:

where Cl, p, q, and A are real, positive constants, with

q > p. The formula for z is obtained by integration.

Relations between p, q, and h are established such that

rl = rz = Y. These constants may be computed from his

formulas as functions of r/b, or read from his graph.’o

Weber applied this transformation to the case of an

electric-wall boundary adjacent to the rounded corner

by assuming the real axis of the t plane to be an elec-

tric wall with a discontinuity in potential at point

2. However, the same transformation may be used

for an adjacent magnetic wall by transforming the t

plane into the w plane as shown in Fig. 15. The vertical

magnetic wall in the w plane maps into the adjacent

magnetic wall of the z plane. Since the electric field in

?0 Weber, op. cit., p. 37.5.

the upper-right-hand corner of the w plane is uniform,

the electric field strength in the z plane is proportional

to ] dw/dz[, and was found to be

From this, (6) for E~.JEO was derived.

2) Constant-Field-Strength Boundary: I nspection of

(17) shows that if A is set equal to ~p/g, E(z) will be

constant for t real and in the interval p~t ~g. When

A = v’~/q is substituted in (17) and in Weber’s formulas,

(7)—(11) result.

C. .4 nalysis of Rounded 45-DegYee CoYne~

By application of the Schwartz-Christoffel method,

the z-plane boundary in Fig. 16(a) was transformed into

the real axis of the t plane by the following relation:

dz (-~114

z= t–p”

.qfter integration and substitution of

tions, the following formula for z as a

obtained:

– in

I

(18)

boundary condi-

function of twas

(Ht
1/2

()
1/4

+1+43$
–P

()
1/2

1+:

–P

(19)

where P is a positive constant. This transformation

yields an abrupt 45-degree corner. To round the corner

as in Fig. 16(b), (19) was modified into the following

form:

z = .!lz(t’) + (1 – A)z(t”), (20)

where

()~,=P+~l
t – al and t“ =

()

p–&

P
— t+ 6,. (21)

P

The changes in variable of (21) are such that t’= t“=t

at the critical points t= 1 and ~ , but not at t = O. At

t’=0, t=@l/(@+6J, while at t“=(),t= –@2/(&&).

As a result of this modification, a gradual change of

slope from O to 45 degrees occurs with (20) for t in the

range –&/(1 -&)st<&/(l +&).
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In the limit i!~O, (19) and (24) reduce to
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z=— &,{(l - 3)’”+ (t + 6)5/4}. (25)

Eq. (25) may be used to calculate the shape of the z-

plane boundary in the vicinity of the rounded corner,

but it does not, of course, yield the adjacent electric

wall .

A discontinuity in potential occurs at point 1 in the

z and t planes, so that the electric field in the t plane is

nonuniform. The real axis of the t plane may be trans-

formed into the w-plane boundary of Fig. 16(c) con-

taining a uniform electric field by means c)f this dif-

ferential relation

dw 1
(26)

z= *–t”

The electric field within the z-plane boundary near the

corner may then be obtained by differentiation of (23)

and combination with (26), with I f I <<P,

Fig. 16–-Transformations for 4.5-degree corner. (a) Abrupt 45-
J,—

degree corner. (b) Rounded 45-degree corner. (c) Transforma- 2~p’\’/b
tion between t and w planes. E(z) K ; ==

I (f- 8)’/’+ (,+ ~p,q-“ (27)
‘The procedure to follow in determining the con-

tants .4, &, and L5zfor a given value of r/b is to let (20)

take on the following values:

#(al + 62)
Z=—y when t’ = O and t“ = (22)

p + ls,–

l-t-j P(h + M and t,,
~=—_—~ when t’ = = O. (23)

42 p–&

Since these are only two conditions and there are three

constants to be determined, one additional condition

may be specified. This could be, for example, that the

curve :should be most nearly symmetrical about its

center point.

The case r/b<<l is of particular practical interest. In

the limit r/b-0, the constants have values A = 1/2 and

& = &=: ~, so that ~ becomes the only unknown. Further-

more 6<<P so that (20) and (21) become

z = *2(t– a) ++z(f +6). (24)

The uniform field EO far from the corner is obtained

from (18) and (26) with f+p and C= – b/mplj4

(28)

Combination of (27) and (28) gives the following for-

mula for E(z)/EO valid in the vicinity of the rounded

corner for the case r/b<<l:

E(z) 2@14

E, = I (, - ,)1/4+ (,+ ~)lq “

(29)

The maximum-field-strength points occur at t = ~ 8, At

t=~, (25) yields

2b 2b lIS
j.=

()
— (2~)’/’ and ~1/’ = ~ (2~)’/4. (30)
5mp5/4

Eqs. (,12)–(14) now follow readily from (25), (29), and

(30), when ~ is set equal to unity.


